今天是:     

当前位置:首页 > 学术报告 [返回]

Length minima for a family of filling closed curves on a one-holed torus

文章来源:科研处 发布时间: 2023-12-25 08:01:03 浏览次数:

报告时间:2023-12-25 15:30         
报告地点:学院会议室401         
报告人:张影                  
主办单位:数学学院         
报告人简介:
   张影,苏州大学数学科学学院教授,从事低维流形的几何拓扑学研究,在JDG, Adv. Math., Amer. J. Math. 等国际数学期刊发表研究论文。

报告简介:
We explicitly find the minima as well as the minimum points of the geodesic length functions for the family of filling (hence non-simple) closed curves, a^2b^n (n ≥ 3), on a complete oneholed hyperbolic torus in its relative Teichmüller space, where a, b are simple closed curves on the one-holed torus which intersect exactly once transversely. This provides concrete examples for the problem to minimize the geodesic length of a fixed filling closed curve on a complete hyperbolic surface of finite type in its relative Teichmüller space. This is joint work with Zhongzi Wang.